IP - 2 (CHM)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/89

https://youtu.be/WDAmygLYC1k

Q 1. In S.H.M. which one of the following graphs is a straight line ?
(a) P.E. against displacement
(b) acceleration against time
(c) total energy against displacement
(d) velocity against displacement

Q 2. The displacement time graph of a particle executing S.H.M. (in straight line) is shown. Which of the following statements is true?

(a) the velocity is maximum at $\mathrm{t}=\mathrm{T} / 2$
(b) the acceleration is zero at $\mathrm{t}=\mathrm{T}$
(c) the force is maximum at $t=3 \mathrm{~T} / 4$
(d) the potential energy equals the total oscillation energy at $\mathrm{t}=\mathrm{T} / 2$

Q 3. The displacement time graph of a particle executing S.H.M. is as shown in the figure. The corresponding force-time graph of the particle is

(c)

(d)

Q 4. Acceleration-time graph of a particle executing SHM is as shown in figure. Select the correct alternatives(s)

(a) Displacement of particle at 1 is positive
(b) Velocity of particle at 2 is negative
(c) Potential energy of particle at 3 is minimum
(d) Speed of particle at 4 is decreasing

Q 5. What is the ratio between the potential energy and the total energy of a particle executing SHM, when its displacement is half of its amplitude?
(a) $1: 1$
(b) $1: 2$
(c) $1: 3$
(d) $1: 4$

Q 6. A particle is executing SHM with an amplitude 4 cm . the displacement at which its energy is half kinetic and half potential is
(a) 1 cm
(b) $\sqrt{2} \mathrm{~cm}$
(c) 2 cm
(d) $2 \sqrt{2} \mathrm{~cm}$

Q 7. A particle performing $S H M$ with amplitude 10 cm . At What distance from mean position the kineticenergy of the particle is thrice of its potential energy?
(a) 5 cm
(b) 3 cm
(c) 7 cm
(d) 1 cm

Q 8. A particle executes SHM with an amplitude of 10 cm and frequency 2 Hz . At $t=0$, the particle is at a point where potential energy and kinetic energy are same. The equation for its displacement is
(a) $x=0.1 \sin \left(4 \pi t+\frac{\pi}{4}\right) m$
(b) $x=0.1 \sin (4 \pi t) m$
(c) $x=0.1 \sin \left(4 \pi t+\frac{\pi}{3}\right) m$
(d) $x=0.1 \sin \left(4 \pi t-\frac{\pi}{3}\right) m$

Q 9. A particle starts SHM at time $\mathrm{t}=0$. Its amplitude is A and angular frequency is ω. At time $\mathrm{t}=0$ its kinetic energy is $\frac{E}{4}$. Assuming potential energy to be zero at mean position, the displacement-time equation of the the particle cannot be written as $(\mathrm{E}=$ total mechanical energy of oscillation).
(a) $x=A \cos \left(\omega t+\frac{\pi}{6}\right)$
(b) $\mathrm{x}=\mathrm{A} \sin \left(\omega t+\frac{\pi}{3}\right)$
(c) $x=A \sin \left(\omega t-\frac{2 \pi}{3}\right)$
(d) $x=A \cos \left(\omega t-\frac{\pi}{4}\right)$

Q 10. A particle starts Simple harmonic motion from the mean position. Its amplitude is a and total energy E. At on instant its kinetic energy is $\frac{3 E}{4}$. Its displacement at that instant is
(a) $\frac{a}{\sqrt{2}}$
(b) $\frac{a}{2}$
(c) $\sqrt{3} \frac{a}{2}$
(d) zero

Q 11. The total energy of a vibrating particle in SHM is E. If its amplitude and time period are doubled, its total energy will be :-
(a) 16 E
(b) 8 E
(c) 4 E
(d) E

Q 12. The amplitude of a particle executing SHM is made three-fourth keeping its time period constant. Its total energy will be
(a) $\frac{E}{2}$
(b) $\frac{3 E}{4}$
(c) $\frac{9 E}{16}$
(d) none of these

Q 13. A particle starts its SHM from mean position at $t=0$. If its time period is T and amplitude A then the distance travelled by the particte in the time from $t=0 \rightarrow t=\frac{5 T}{4}$ is
(a) A
(b) 3 A
(c) $4 A$
(d) 5 A

Q 14. In simple harmonic motion of a particle, maximum kinetic energy is 40 J and maximum potential energy is 60 J . then
(a) minimum potential energy will be 30 J
(b) potentiakenergy at half the displacement will be 30 J
(c) kinetic energy at half the displacement is 40 J
(d) potential energy or kinetic energy at some intermediate position cannot be found the given data

Answer Key

Q. 1 c	Q. 2 d	Q. 3 d	Q. 4 d	Q. 5 d
Q. 6 d	Q. 7 a	Q. 8 a	Q. 9 d	Q. 10 b
Q. 11 d	Q. 12 c	Q. 13 d	Q. 14 b	

